Brilliant Activities for Gifted and Talented Children

That Other Children Will Love Too

Ashley McCabe Mowat

Brilliant Publications
About the author

Ashley M. Mowat, Gifted Educator and Consultant (M Ed Gifted Education)

Ashley Mowat grew up in the southern states of America and was a student in the gifted programme from the age of 8. She received a BA in Early Childhood Education, a BA in Elementary Education and studied Psychology at Converse Women’s College in South Carolina. Following university, Ashley continued her education at Converse, receiving a masters degree in Gifted Education. During this time, Ashley taught in an inner city school and completed a thesis on Underachieving Gifted Males. She also planned and implemented a curriculum for the top 100 gifted students in her area for the Athena Institute, a summer programme for gifted students.

Ashley moved to England, married, and in 1999 taught Key Stage 1 at Gateway School in Great Missenden, Buckinghamshire. The following year, she piloted a gifted programme in the school. She spent the year writing and implementing a themed curriculum dealing with issues of the gifted and talented. The programme has been a great success. Ashley has organized Creative and Critical Thinking Workshops at Gateway during the school holidays and taught at various summer programmes for gifted pupils. Ashley teaches at Gateway part-time. She has provided INSET training days for teachers in schools involved with the Excellence in Cities programme and works with the National Association for Gifted Children (NAGC) on their website.

Ashley is available to provide INSET training days, and workshops for children. She can be contacted direct via email (amm_gifteded@hotmail.com) or via Brilliant Publications.
Teaching Gifted Children is becoming an increasingly important topic in the UK. A very confusing issue for most teachers is just where to begin! You already have so much to do, and probably can’t work out when you are going to have time to include activities for Gifted and Talented Children! However, it is extremely important to reach these children, as they are quite often children who fall behind, lose their confidence and become underachievers.

This book will help you to make a start. It is designed to give you ideas for activities that you can use in your classroom. The activities can be modified to suit ages from 6 and up. The work that the children produce will be extremely different because the activities allow room for creativity and open-ended answers. I have based the activities on Bloom’s Taxonomy and the Cognitive/Affective Domains of Creative Thinking.

Bloom’s Taxonomy of Educational Objectives has been widely adopted as a model for conceptualizing higher level thinking skills for gifted learners. Although originally developed for a quite different purpose (to classify instructional objectives and test items in a hierarchical fashion), practitioners began to relate the levels of the Taxonomy to the teaching of thinking skills for gifted and talented youth or for children in general. The model now presents a hierarchy of thinking operations whose highest levels are analysis, synthesis and evaluation and can provide the basis for exciting the child’s intellectual processes. You will find a chart explaining these levels on page 6. The activities in this book will stretch the children to think at the three highest levels.

E. Paul Torrance developed the faces and forms of creativity through the Cognitive and Affective Domains. In the Cognitive category are Fluent Thinking, Flexible Thinking, Original Thinking and Elaborative Thinking. In the Affective category are Curiosity, Imagination, Risk-taking and Complexity. I have developed the activities in this book to reach all of these types of thinking skills, and have outlined this for you on page 9.

Gifted Children are not the only children who will benefit from this book. There are activities that cover many types of creative and critical thinking skills that will enable all children to develop their cognitive processes. I think you will find that the best part about this book is that your children will thoroughly enjoy the activities. You could stretch some of the activities out for days or, in the Brainteaser section, just have a quick warm-up to spark interest and excite the brain! You will also have the confidence of knowing that you are doing something extra in your classroom that really helps all of your children THINK!
Bloom's Taxonomy describes six levels of thinking, arranged sequentially from least to most complex.

1. **Knowledge** is simply recall. Students can say that they ‘know’ something if they can recall it, recite it, or write it down.

2. **Comprehension** means that students can say what they ‘know’ in their own words. Retelling a story, stating the main idea, or translating from another language are several ways in which students can demonstrate that they ‘comprehend’ or understand what they have learned.

3. **Application** means that students can apply what they have learned from one context to another. For example, they may be required to decide when to apply mathematical concepts to real-life situations.

4. **Analysis** means that a student can understand the attributes of something so that its component parts may be studied separately and in relation to one another. Asking students to compare and contrast, categorize, and/or recognize inferences, opinions, or motives would give them experience in analysis.

5. **Synthesis** requires students to create a novel or original thought, idea, or product. All of the activities we call ‘creative thinking’ give students experience with synthesis. Also, when students can take bits and pieces of several theories or combine ideas from different sources to create an original perspective or idea, they are thinking at a synthesis level.

6. **Evaluation** gives students opportunities to judge what they have analyzed.
<table>
<thead>
<tr>
<th>Knowledge</th>
<th>Comprehension</th>
<th>Application</th>
<th>Analysis</th>
<th>Synthesis</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remembering previously learned material</td>
<td>Ability to grasp the meaning of material</td>
<td>Applying concepts and principles to new situations</td>
<td>Breaking material down into component parts</td>
<td>Pulling parts together in a new whole</td>
<td>Ability to judge the value of material</td>
</tr>
<tr>
<td>Lowest level of learning</td>
<td>Interpreting the material</td>
<td>Applying laws and theories to practical situations</td>
<td>Understanding the organizational structures</td>
<td>Formulating new patterns and structures</td>
<td>Use of definite criteria for judgements</td>
</tr>
<tr>
<td>Listing learned information</td>
<td>Seeing relationships among things</td>
<td>Solving mathematical problems</td>
<td>Analysis of relationships between parts</td>
<td>Abstract relationships</td>
<td>Value judgements based on clearly defined criteria</td>
</tr>
<tr>
<td>Bringing to mind appropriate material</td>
<td>Projecting effects of ideas</td>
<td>Constructing charts and graphs</td>
<td>Recognition of organizational principles involved</td>
<td>Communicating an idea in a unique way</td>
<td>Highest learning outcome</td>
</tr>
<tr>
<td>Recalling information</td>
<td>Communicating an idea in a new or different way</td>
<td>Demonstrating correct usage of method or procedure</td>
<td>Requires understanding of both the content and structural form</td>
<td>Creating new or original things</td>
<td>Use of cognitive and affective things together</td>
</tr>
<tr>
<td>Bringing to mind stored knowledge</td>
<td>Lowest level of understanding</td>
<td>Applying rules, methods, concepts, laws, theories</td>
<td>Analyzing the elements</td>
<td>Taking things and patterning them in a new way</td>
<td>Solution-finding and decision-making</td>
</tr>
<tr>
<td>Reciting learned information</td>
<td>Explaining ideas</td>
<td>Requires higher level of understanding than comprehension</td>
<td>Problem-finding</td>
<td>Implementation and planning</td>
<td></td>
</tr>
<tr>
<td>Remembering terms, methods, facts, concepts, specific items of information</td>
<td>Summarizing material</td>
<td>Making use of the unknown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Understanding facts and principles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estimating future trends</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Predicting consequences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interpreting charts and graphs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. **Fluent thinking (to think of the most)**

Generation of quantity
Flow of thought
Number of relevant responses

Examples of fluent thinking:
- The person who has a flow of answers when a question is asked
- The person who usually has several ideas about something while others struggle
- The person who always produces more than others in the class
- The person who uses a large number of words when expressing him/herself

2. **Flexible thinking (to take different approaches)**

Variety of kinds of ideas
Ability to shift categories
Detours in direction of thought

Examples of flexible thinking:
- The person who thinks of various ways to use an object other than its common use
- The person who shifts and takes another point of view or considers situations differently from others in the class
- The person who has different interpretations of a picture, story, or problem other than one being discussed
- The person who, when given a problem, usually thinks of different possibilities for solving it

3. **Original thinking (to think in novel or unique ways)**

Unusual responses
Clever ideas
Production away from the obvious

Examples of original thinking:
- The person who is dissatisfied with the stereotyped answer and seeks a fresh approach
- The nonconformist who cannot help being different and always has a new twist in thinking and behaving
- The person who enjoys the unusual and will rebel against doing things the way everyone else does them
- The person who deviates from others to do things his/her own way
- The person who not only questions the old way but will try to work out a new way

4. **Elaborative thinking (to add on to...)**

Embellishing an idea
Stretching or expanding upon things or ideas

Examples of elaborative thinking:
- The person who always attempts to add details to things and make them more beautiful
- The person who will add lines, colour and detail to his/her drawings or another’s
- The person who produces more detailed steps to an answer or solution
1. **Curiosity (to be willing to...)**

Be inquisitive and wonder

Be open to puzzling situations

Toy with an idea

Examples of curiosity:
- The person who constantly searches for ‘why’
- The person who questions everything and everyone
- The person who needs no real push to explore something unfamiliar
- The person who constantly searches for new ideas

2. **Imagination (to have the power to...)**

Visualize and build mental images

Dream about things that have never happened

Reach beyond sensual or real boundaries

Examples of imagination:
- The person who can go somewhere in his/her dreams without leaving the room
- The person who likes to build images of things she/he has never seen
- The person who can tell a story about a place she/he has never visited
- The person who can make inanimate objects come to life

3. **Risk-taking (to have the courage to...)**

Take a guess

Defend own ideas

Expose oneself to failure or criticism

Examples of risk-taking:
- The person who will defend his/her own ideas regardless of what others think
- The person who will admit to a mistake
- The person who is willing to try the difficult task
- The person who prefers to take a chance or dare

4. **Complexity (to be challenged to...)**

Seek many alternatives

See gaps between how things are and how they could be

Delve into intricate problems or ideas

Examples of complexity:
- The person who appreciates complex problems and ideas
- The person who wants to work out things for him/herself
- The person who will choose a more difficult way out
How the activities relate to the domains

<table>
<thead>
<tr>
<th>Activity</th>
<th>Fluency</th>
<th>Flexibility</th>
<th>Originality</th>
<th>Elaboration</th>
<th>Curiosity</th>
<th>Imagination</th>
<th>Risk-taking</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brainstorming</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I wonder</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Do or die!</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>The magic words</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Who could it be?</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>A die-r mistake!</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Twins … or …</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Trickster</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>A flying nuisance</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Who is he?</td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Quilting memories</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>A dog’s life</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Wacky neighbours</td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>A carnival wish</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>The big top!</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Sweet Shoppe</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>The secret clubhouse</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Dinotrocius</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Up, up and away!</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Reach out and touch someone</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Can you see the sea?</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>N is for narwhal</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Breakout</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Treat your taste to chocolate</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Futurama</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Cut-ups</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Timmm…ber!</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Again and again!</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Traffic blues</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Newspaper bonanza</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Treasure hunt</td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Rain, rain, go away</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Special edition</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Sandwich-city</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Where in the world?</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>The moon or bust!</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Inside out!</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>The dilemma</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Peek-a-boo</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Survivor</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>It’s a lemon</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>
1. Quantity is important

Get as many ideas as you can down on paper or on the board. It is not important what you say at this stage, just make sure you have a long list!

2. No judgement

Don’t make fun of anyone’s ideas, even your own. Welcome all ideas and write them down on your list. You will have a chance to judge your ideas at a later stage.

3. Favour far out ideas

Ideas that seem really silly are great! They stimulate creativity and may lead to an idea that does not seem so silly later. Good ideas sometimes stem from crazy ideas!

4. Bouncing ideas off each other is definitely allowed

When you hear someone else’s ideas, it makes a light go off in your brain that gives you a different idea. This is called bouncing ideas off one another. Only one idea can lead to another, and another, and ANOTHER! Sometimes the best ideas are stimulated from hearing a great idea from your friend.
Ideas for brainstorming

Name as many items as you can that are:
◆ As important as the written word
◆ As impossible to open as a tin without a tin opener
◆ As complex as the human brain
◆ As intricate as a spider web
◆ As often found together as a lock and key
◆ As obese as a whale
◆ As unusual as a mother with ten sets of twins
◆ As insignificant as a grain of sand
◆ As frequently used as a Christmas tree
◆ As much a pair as shoes and socks
◆ As bright as a spotlight
◆ As funny as a clown car with ten clowns
◆ As happy as a winner at the end of a race

How many ways can you think of to:
◆ Protect yourself in water
◆ Protect yourself from a storm
◆ Protect yourself from sunburn
◆ Show someone that you like them
◆ Please your teacher
◆ Please your parents
◆ Please a friend
◆ Please a sibling
◆ Please yourself
◆ Keep yourself from getting bored waiting for lunch at school

Examples of using brainstorming in subject areas:

List as many as you can:
◆ Geographic terms
◆ Explorers (kinds of)
◆ Community helpers

How many ways can you think of to improve:
◆ Neighbourhoods
◆ Mealtimes at your house
◆ Recreation facilities in your village or community
◆ Understanding between different minority groups at your school/in your community

How many different:
◆ Kinds of hardships might ______ have faced
◆ Ways to use any natural resource
◆ Problems might have occurred when …

Use this list for a place to begin and then come up with your own.
Better yet – ask the children to develop their own lists! To target flexibility, have the children categorize their responses.
This is an activity that I do in my classroom that the children always love! You may want to create a box in your classroom for these questions, or simply ask children to write their questions down on a piece of paper. The children can use this activity to find out about any subject that they are interested in!

Have the children write down any question about something that they want to know the answer to. The question should begin with Who, What, When, Where, How or Why. The child will then take the question home and find out the answer. Have the children brainstorm sources. They may use any source available. (For example: encyclopedias, the internet, a parent, a specialist.) The children may occasionally swap questions with classmates.

At the beginning of each lesson, the children will share their findings with the class. This is a time when discussion may be led and the internet could be used to find further information.
Do or die!

Two men walk into a restaurant. They both order exactly the same drink. One man drinks it fast and one man drinks it slowly. The one who drinks it fast lives. The one who drinks it slowly dies. WHY?

You can ask as many questions as you would like, but the teacher can only answer yes or no.

The magic words

Tell the children you are going to draw a perfect picture with a pencil in the air, which you hold in your hand. You are going to pass the pencil around the table and see if any of the pupils can draw a perfect picture as well. You will say yes, or no, and they will pass the pencil to the next person. There is no perfect way to wave the pencil in the air; the trick is to say THANK YOU to the person handing you the pencil. If the pupil receiving the pencil says this, and draws in the air, they have drawn the ‘perfect picture’. If they do not say thank you, they have not. You may have to pass the pencil around several times for the children to notice what you are doing.
Who could it be?

Two Australians got on a bus. One of the Australians was the father of the other Australian’s son. How was this possible?

A die-r mistake!

You are walking through a graveyard when you notice something wrong with one of the gravestones. It says something that isn’t true! How do you know that something is wrong with this gravestone?

Here lies Oliver Judkins
11 October 1948 – 15 September 1999

And his beloved widow, Virginia
7 December 1950 – 10 September 1983
Robert and William Parry were both born just before noon on 7 May 2001. They had the same parents, Andrew and Diana Parry. You see Robert and William in the nursery and say to Diana, ‘Your twins are lovely!’ Diana looks at you and replies, ‘They are not twins!’ You are very confused. They were born on exactly the same day, with the same parents!

How is this possible?

Your class is taking a trip to the national science convention on Thursday and you can’t wait! You wake up in the morning, put your thinking cap on and get ready for the journey. On the bus, you can’t stop thinking of all the interesting and exciting new things you will see. There is one exhibition that everyone has been talking about. A science teacher has developed a new secret substance and you really want to know what it is. When you arrive, you make a beeline straight for the exhibit where the teacher is standing. You hear him say, ‘Here it is, right in front of you in this glass jar! A new substance that will dissolve any solid matter in just seconds.’ Oh my, you think. He is lying! All of these people are being fooled!

How do you know the science teacher is not telling the truth?